## adhere image

See image adhere.
## adhere vertex

### adhere(d) vertex vol(a)vol(b1,b2,...)

Force points signifying of volume **a** of those of volumes **b1, b2, ...**

**Remarque:** requires that max NPvol(a) = sum(max NP vol(bi)).
### adhere(d)vertex(sa)vol(a)vertex(sb)vol(b)

Points **sa** of the volume **a** will be forced on points **sb** of the volume **b** at the distance b thereof.

**Remarques:**

1) **d** =0 by default.

2) It is necessary that the volume **b** is closed

3) Faster than envelope vertex vol for peakscontiguous.
### adhere(d)vertex(sa)vol(a)vertex(sb1,sb2,...)vol(b1,b2,)

Points **sa** of the volume **a** are forced on points **sbi** of volumes **bi**.

**Remarques:**

1) requires that dim(sa) = sum (dim(sbi)).

2) See attach adhere to encapsulate this property.

**Example:**

adhere(d)vertex([1,16])vol(3)vertex([1,8],[1,8])vol(1,2);
## adhere vol

ball
vol vol
### adhere(d) vol(id1)ball(x,y,z,r)

Returns the number of the vertices of volume **id1** which are internal the ball center **(x, y, z)** and radius **r**
and bring them outside the ball.

**Options:**

**axis(ax,ay,az)ang(an)**:
processes the spherical cap axis **(ax, ay, az)** and half aperture angle **an**.
### adhere(d) vol(id1)vol(id2)

Returns the number of the vertices of volume **id1** which are internal at the volume **id2**
and bring them outside the volume of the distance **d**.
**Comments:**

1) **d** = 0 by default.

2) If **d** is large, The volume **id1** is well off the volume **id2**, but an frisoti effect may appear in dynamic animation.
To avoid this you can build a volume **id3** no displayable obtained by dilation <1 of volume **id2** and do:

`adhere vol(id1)vol(id3)`

.

See an example in the fonction `func_VOL()`

of file
demo1_adhere.func.
### See also