Perceptron


Principe
Contenu
Les menus
Une séquence complète
Utilisations

Principe

Cette application montre:
comment construire très rapidement des réseaux neuronaux de type perceptron par lecture de fichiers formaté en matrices.
comment gérer un apprentissage.
comment utiliser de tels réseaux.

Contenu

Dossier env

Contenant
*.alp: fichiers matrice décrivant des motifs ou des lois.
*.res: fichiers réseaux neuronaux.

anyflo.js

Java scrypte de lancement en format vidéo.

initb.h Fichier de configuration dans le dossier env de la racine distribution.

perceptron.func

Fonction en langage anyflo.

perceptron.htm

Ce fichier.

perceptron.js

Java scrypte de lancement de l´application.

Les menus

Menu principal
Sous menu des motifs
Sous menu des lois
Sous menu des réseaux neuronaux

Menu principal

MEN: menu principal.
HEL: help de ce menu.
MOTIF: sous menu des motifs.
LOI: sous menu des lois.
RES: sous menu des réseaux neuronaux.

Sous menu des motifs

MOTIF: ce sous menu.
HEL: help de ce sous menu.
LIR: cliquer sur un nom.alp, le fichier est chargé dans les motifs du ré.

Sous menu des lois

LOI: ce sous menu.
HEL: help de ce sous menu.
LIR: cliquer sur un nom.alp, le fichier est chargé dans les lois du ré.

Sous menu des réseaux neuronaux

RES: ce sous menu.
HEL: help de ce sous menu.
CRE: création du réseau 1 de type fac.
AFF: affichage des motifs, des lois, des neurones et de leurs connexions.
APP: apprentissage.

Une séquence complète

Premiès;res manipulations

Cliquer sur RES.
Le message clignotant Cliquer sur CRE indique la marche à suivre.
Cliquer sur CRE.
Le message generer reseau(1) indique que le réseau 1 a été construit.
Le message clignotant Cliquer sur MOTIF indique la marche à suivre.
Cliquer sur MOTIF.
Le message clignotant Cliquer sur LIR indique la marche à suivre.
Cliquer sur LIR.
Le message clignotant Cliquer sur un nom.alp indique la marche à suivre.
Cliquer sur chiffres_arabes.alp.
Les matrices lues sont affichées.
Le message clignotant Cliquer sur LOI indique la marche à suivre.
Cliquer sur LOI.
Le message clignotant Cliquer sur LIR indique la marche à suivre.
Cliquer sur LIR.
Le message clignotant Cliquer sur un nom.alp indique la marche à suivre.
Cliquer sur chiffres_chinoiss.alp.
Les matrices lues sont affichées.
Le message clignotant Cliquer sur RES->APP indique la marche à suivre.
Cliquer sur RES puis sur APP.
Les motifs (chiffres arabes) sont affichés en rouge.
Les lois (chiffres chinois) sont affichés en vert.
La courbe des erreurs est affichée en blanc, descend rapidement au dessous de 50% et tend vers zéro.
Le message clignotant Cliquer sur un motif (rouge) indique la marche à suivre.
Cliquer sur un motif rouge, celui-ci est affiché en orange à droite et son transformé par le réseau est affiché en cyan au dessous.

Manipulations avancées

Il se peut, si les lois sont très différentes des motifs, que le réseau ne converge pas: augmenter le nombre de couches cachées cahc, s´il n´y a toujours pas convergence cliquer sur NOISE au dessous de la courbe des erreurs, l'apprentissage est alors relancé à partir d´une nouvelle matrice de poids synaptiques aléatoires. On peut aussi modifier l´amplitude de variation des constantes d´apprentissage coe1 et coe2.
On peut construire d´autres fichiers .alp de matrices de mêmes nombres de lignes et de colonnes.

Utilisations

Reconnaissance de formes
Correspondance

Reconnaissance de formes

Il suffit de charger des lois identiques aux motifs pour que le réseau fonctionne en reconnaissance de formes.
Activer l´échelle alea qui a pour effet de bruiter le motif d´entrée, le réseau reconnait toujours la forme, ce qui montre la propriété de généralisation des réseaux neuronaux qui sont capables de reconnaître des motifs non appris.

Correspondance

Si les lois sont différentes des motif on a là un moyen de faire correspondre des sorties avec des entrées avec l´avantage que les données peuvent être bruitées et qu´un couple (E,S) non appris sera quand même reconnu.
Ces propriétés sont utilisées dans le mime virtuel pour doter le mime d´une certaine autonomie en lui donnant la possibilité de dépasser la simple copie.