# matrix

## matrix brush

### matrix brush(id)

Returnsthe la matrix of brush id.

### matrix brush(id)={mi,j} 0 < =i,j < np

Assigns this matrix.
Note:
defines a convolution matrix if the brush if of type smooth or average.

## matrix quat

### matrix quat(a,x,y,z)

Returns the matrix 4*4 of the quaternion defined by angle a and axis (x,y,z).
Examples:
`m=matrix quat(0,0,0,0);edit(m)format(4);`
Imprime:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
`m=matrix quat(.25*PI,0,0,1)edit(m)format(4);`
Prints:
-1.000000 -1.570796 0.000000 0.000000
1.570796 -1.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 0.000000 1.000000

## matrix network

### matrix network(id)

Returns the matrix of the synaptic weighs of the neural network id.

### matrix network(id)=p11,p12,...,p21,p22,...,pn1,pn2,...,pnn

pij is the matrix of synaptic weights of the network id.
Note: This matrix is the square array m [n, n] (n = number of neurons), m [i, j] = weight of the connection between neuron i and neuron j.

## matrix transformation

### matrix unit

Returns the unit matrix.

### matrix dila(cx,cy,cz)

Returns the dilatation matrix coefficients (cx,cy,cz).

### matrix dilx(c)

Returns the x dilatation matrix coefficient (c).

### matrix dily(c)

Returns the y dilatation matrix coefficient (c).

### matriz dilz(c)

Returns the z dilatation matrix coefficient (c).

### matrix hom(c)

Returns the dilatation matrix coefficient (c,c,c).

### matrix rotx(a)

Returns the x rotation matrix angle (a).

### matrix roty(a)

Returns the y rotation matrix angle (a).

### matrix rotz(a)

Returns the z rotation matrix angle (a).

### matrix syma

Returns the symmetry matrix.

### matrix symx

Returns the x symmetry matrix.

### matrix symy

Returns the y symmetry matrix.

### matrix symz

Returns the z symmetry matrix.

## matrix vol

### matrix vol(id)

Returns the matrix 4 * 4 of volume id in homogenous coordinates.
Options:
matrix(0): returns tran(x,y,z), dilxyz, rota,axis, rotxyz (13 floats).
matrix(1): same as matrix.