# adhere

## adhere image

See image adhere.

## adhere vertex

### adhere(d) vertex vol(a)vol(b1,b2,...)

Force points signifying of volume a of those of volumes b1, b2, ...
Remarque: requires that max NPvol(a) = sum(max NP vol(bi)).

### adhere(d)vertex(sa)vol(a)vertex(sb)vol(b)

Points sa of the volume a will be forced on points sb of the volume b at the distance b thereof.
Remarques:
1) d =0 by default.
2) It is necessary that the volume b is closed
3) Faster than envelope vertex vol for peakscontiguous.

### adhere(d)vertex(sa)vol(a)vertex(sb1,sb2,...)vol(b1,b2,)

Points sa of the volume a are forced on points sbi of volumes bi.
Remarques:
1) requires that dim(sa) = sum (dim(sbi)).
2) See attach adhere to encapsulate this property.
Example:
adhere(d)vertex([1,16])vol(3)vertex([1,8],[1,8])vol(1,2);

## adhere vol

ball        vol vol

### adhere(d) vol(id1)ball(x,y,z,r)

Returns the number of the vertices of volume id1 which are internal the ball center (x, y, z) and radius r and bring them outside the ball.
Options:
axis(ax,ay,az)ang(an): processes the spherical cap axis (ax, ay, az) and half aperture angle an.

### adhere(d) vol(id1)vol(id2)

Returns the number of the vertices of volume id1 which are internal at the volume id2 and bring them outside the volume of the distance d. Comments:
1) d = 0 by default.
2) If d is large, The volume id1 is well off the volume id2, but an frisoti effect may appear in dynamic animation. To avoid this you can build a volume id3 no displayable obtained by dilation <1 of volume id2 and do:
`adhere vol(id1)vol(id3)`.
See an example in the fonction `func_VOL()` of file demo1_adhere.func.